Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 102
Filtrar
1.
Nature ; 607(7917): 149-155, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35705813

RESUMO

Immunosurveillance of cancer requires the presentation of peptide antigens on major histocompatibility complex class I (MHC-I) molecules1-5. Current approaches to profiling of MHC-I-associated peptides, collectively known as the immunopeptidome, are limited to in vitro investigation or bulk tumour lysates, which limits our understanding of cancer-specific patterns of antigen presentation in vivo6. To overcome these limitations, we engineered an inducible affinity tag into the mouse MHC-I gene (H2-K1) and targeted this allele to the KrasLSL-G12D/+Trp53fl/fl mouse model (KP/KbStrep)7. This approach enabled us to precisely isolate MHC-I peptides from autochthonous pancreatic ductal adenocarcinoma and from lung adenocarcinoma (LUAD) in vivo. In addition, we profiled the LUAD immunopeptidome from the alveolar type 2 cell of origin up to late-stage disease. Differential peptide presentation in LUAD was not predictable by mRNA expression or translation efficiency and is probably driven by post-translational mechanisms. Vaccination with peptides presented by LUAD in vivo induced CD8+ T cell responses in naive mice and tumour-bearing mice. Many peptides specific to LUAD, including immunogenic peptides, exhibited minimal expression of the cognate mRNA, which prompts the reconsideration of antigen prediction pipelines that triage peptides according to transcript abundance8. Beyond cancer, the KbStrep allele is compatible with other Cre-driver lines to explore antigen presentation in vivo in the pursuit of understanding basic immunology, infectious disease and autoimmunity.


Assuntos
Antígenos de Neoplasias , Peptídeos , Proteômica , Células Epiteliais Alveolares/imunologia , Animais , Apresentação de Antígeno , Antígenos de Neoplasias/análise , Antígenos de Neoplasias/química , Antígenos de Neoplasias/imunologia , Linfócitos T CD8-Positivos/citologia , Linfócitos T CD8-Positivos/imunologia , Carcinoma Ductal Pancreático/química , Carcinoma Ductal Pancreático/imunologia , Antígenos de Histocompatibilidade Classe I/genética , Antígenos de Histocompatibilidade Classe I/imunologia , Neoplasias Pulmonares/química , Neoplasias Pulmonares/imunologia , Camundongos , Neoplasias Pancreáticas/química , Neoplasias Pancreáticas/imunologia , Peptídeos/análise , Peptídeos/química , Peptídeos/imunologia , RNA Mensageiro
2.
Biomed Pharmacother ; 143: 112184, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34562768

RESUMO

Mycoplasma pneumoniae-induced pneumonia (MPP) is a common cause of community-acquired respiratory tract infections, increasing risk of morbidity and mortality, in children. However, diagnosing early-stage MPP is difficult owing to the lack of good diagnostic methods. Here, we examined the protein profile of bronchoalveolar lavage fluid (BALF) and found that S100A8/A9 was highly expressed. Enzyme-linked immunosorbent assays used to assess protein levels in serum samples indicated that S100A8/A9 concentrations were also increased in serum obtained from children with MPP, with no change in S100A8/A9 levels in children with viral or bacterial pneumonia. In vitro, S100A8/A9 treatment significantly increased apoptosis in a human alveolar basal epithelial cell line (A549 cells). Bioinformatics analyses indicated that up-regulated S100A8/A9 proteins participated in the interleukin (IL)-17 signaling pathway. The origin of the increased S100A8/A9 was investigated in A549 cells and in neutrophils obtained from children with MPP. Treatment of neutrophils, but not of A549 cells, with IL-17A released S100A8/A9 into the culture medium. In summary, we demonstrated that S100A8/A9, possibly released from neutrophils, is a new potential biomarker for the clinical diagnosis of children MPP and involved in the development of this disease through enhancing apoptosis of alveolar basal epithelial cells.


Assuntos
Células Epiteliais Alveolares/metabolismo , Apoptose , Calgranulina A/metabolismo , Calgranulina B/metabolismo , Interleucina-17/farmacologia , Mycoplasma pneumoniae/patogenicidade , Neutrófilos/efeitos dos fármacos , Comunicação Parácrina , Pneumonia por Mycoplasma/metabolismo , Células A549 , Células Epiteliais Alveolares/imunologia , Células Epiteliais Alveolares/microbiologia , Células Epiteliais Alveolares/patologia , Biomarcadores/metabolismo , Estudos de Casos e Controles , Criança , Pré-Escolar , Feminino , Interações Hospedeiro-Patógeno , Humanos , Lactente , Masculino , Mycoplasma pneumoniae/imunologia , Neutrófilos/imunologia , Neutrófilos/metabolismo , Neutrófilos/microbiologia , Pneumonia por Mycoplasma/imunologia , Pneumonia por Mycoplasma/microbiologia , Pneumonia por Mycoplasma/patologia , Transdução de Sinais
3.
Proc Natl Acad Sci U S A ; 118(35)2021 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-34446559

RESUMO

Perturbation of lung homeostasis is frequently associated with progressive and fatal respiratory diseases, such as pulmonary fibrosis. Leucine-rich repeat kinase 2 (LRRK2) is highly expressed in healthy lungs, but its functions in lung homeostasis and diseases remain elusive. Herein, we showed that LRRK2 expression was clearly reduced in mammalian fibrotic lungs, and LRRK2-deficient mice exhibited aggravated bleomycin-induced pulmonary fibrosis. Furthermore, we demonstrated that in bleomycin-treated mice, LRRK2 expression was dramatically decreased in alveolar type II epithelial (AT2) cells, and its deficiency resulted in profound dysfunction of AT2 cells, characterized by impaired autophagy and accelerated cellular senescence. Additionally, LRRK2-deficient AT2 cells showed a higher capacity of recruiting profibrotic macrophages via the CCL2/CCR2 signaling, leading to extensive macrophage-associated profibrotic responses and progressive pulmonary fibrosis. Taken together, our study demonstrates that LRRK2 plays a crucial role in preventing AT2 cell dysfunction and orchestrating the innate immune responses to protect against pulmonary fibrosis.


Assuntos
Células Epiteliais Alveolares/imunologia , Bleomicina/toxicidade , Fibrose Pulmonar Idiopática/prevenção & controle , Imunidade Inata , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/fisiologia , Pulmão/imunologia , Macrófagos/imunologia , Células Epiteliais Alveolares/metabolismo , Células Epiteliais Alveolares/patologia , Animais , Antibióticos Antineoplásicos/toxicidade , Autofagia , Homeostase , Fibrose Pulmonar Idiopática/induzido quimicamente , Fibrose Pulmonar Idiopática/metabolismo , Fibrose Pulmonar Idiopática/patologia , Pulmão/metabolismo , Pulmão/patologia , Macrófagos/metabolismo , Macrófagos/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Transdução de Sinais
4.
Nat Commun ; 12(1): 4869, 2021 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-34381043

RESUMO

In COVID-19, immune responses are key in determining disease severity. However, cellular mechanisms at the onset of inflammatory lung injury in SARS-CoV-2 infection, particularly involving endothelial cells, remain ill-defined. Using Syrian hamsters as a model for moderate COVID-19, we conduct a detailed longitudinal analysis of systemic and pulmonary cellular responses, and corroborate it with datasets from COVID-19 patients. Monocyte-derived macrophages in lungs exert the earliest and strongest transcriptional response to infection, including induction of pro-inflammatory genes, while epithelial cells show weak alterations. Without evidence for productive infection, endothelial cells react, depending on cell subtypes, by strong and early expression of anti-viral, pro-inflammatory, and T cell recruiting genes. Recruitment of cytotoxic T cells as well as emergence of IgM antibodies precede viral clearance at day 5 post infection. Investigating SARS-CoV-2 infected Syrian hamsters thus identifies cell type-specific effector functions, providing detailed insights into pathomechanisms of COVID-19 and informing therapeutic strategies.


Assuntos
COVID-19/imunologia , Modelos Animais de Doenças , Células Epiteliais Alveolares/imunologia , Animais , Cricetinae , Citocinas/genética , Citocinas/imunologia , Células Endoteliais/imunologia , Humanos , Imunoglobulina M/imunologia , Inflamação , Pulmão/imunologia , Macrófagos/imunologia , Mesocricetus , Monócitos/imunologia , SARS-CoV-2/imunologia , Transdução de Sinais , Linfócitos T Citotóxicos/imunologia , Receptores Toll-Like/imunologia
5.
PLoS Pathog ; 17(4): e1009491, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33793661

RESUMO

DNA methyltransferase (Dnmt)3b mediates de novo DNA methylation and modulation of Dnmt3b in respiratory epithelial cells has been shown to affect the expression of multiple genes. Respiratory epithelial cells provide a first line of defense against pulmonary pathogens and play a crucial role in the immune response during pneumonia caused by Pseudomonas (P.) aeruginosa, a gram-negative bacterium that expresses flagellin as an important virulence factor. We here sought to determine the role of Dntm3b in respiratory epithelial cells in immune responses elicited by P. aeruginosa. DNMT3B expression was reduced in human bronchial epithelial (BEAS-2B) cells as well as in primary human and mouse bronchial epithelial cells grown in air liquid interface upon exposure to P. aeruginosa (PAK). Dnmt3b deficient human bronchial epithelial (BEAS-2B) cells produced more CXCL1, CXCL8 and CCL20 than control cells when stimulated with PAK, flagellin-deficient PAK (PAKflic) or flagellin. Dnmt3b deficiency reduced DNA methylation at exon 1 of CXCL1 and enhanced NF-ĸB p65 binding to the CXCL1 promoter. Mice with bronchial epithelial Dntm3b deficiency showed increased Cxcl1 mRNA expression in bronchial epithelium and CXCL1 protein release in the airways during pneumonia caused by PAK, which was associated with enhanced neutrophil recruitment and accelerated bacterial clearance; bronchial epithelial Dnmt3b deficiency did not modify responses during pneumonia caused by PAKflic or Klebsiella pneumoniae (an un-flagellated gram-negative bacterium). Dnmt3b deficiency in type II alveolar epithelial cells did not affect mouse pulmonary defense against PAK infection. These results suggest that bronchial epithelial Dnmt3b impairs host defense during Pseudomonas induced pneumonia, at least in part, by dampening mucosal responses to flagellin.


Assuntos
DNA (Citosina-5-)-Metiltransferases/imunologia , Pneumonia Bacteriana/imunologia , Infecções por Pseudomonas/imunologia , Pseudomonas aeruginosa/imunologia , Células Epiteliais Alveolares/imunologia , Células Epiteliais Alveolares/microbiologia , Animais , Brônquios/imunologia , Brônquios/microbiologia , DNA (Citosina-5-)-Metiltransferases/genética , Metilação de DNA , Células Epiteliais/imunologia , Células Epiteliais/microbiologia , Flagelina/imunologia , Humanos , Imunidade , Pulmão/imunologia , Pulmão/microbiologia , Camundongos , Infiltração de Neutrófilos , Pneumonia Bacteriana/microbiologia , Infecções por Pseudomonas/microbiologia , Mucosa Respiratória/imunologia , Mucosa Respiratória/microbiologia , DNA Metiltransferase 3B
6.
Nature ; 591(7850): 451-457, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33561864

RESUMO

All coronaviruses known to have recently emerged as human pathogens probably originated in bats1. Here we use a single experimental platform based on immunodeficient mice implanted with human lung tissue (hereafter, human lung-only mice (LoM)) to demonstrate the efficient in vivo replication of severe acute respiratory syndrome coronavirus (SARS-CoV), Middle East respiratory syndrome coronavirus (MERS-CoV) and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), as well as two endogenous SARS-like bat coronaviruses that show potential for emergence as human pathogens. Virus replication in this model occurs in bona fide human lung tissue and does not require any type of adaptation of the virus or the host. Our results indicate that bats contain endogenous coronaviruses that are capable of direct transmission to humans. Our detailed analysis of in vivo infection with SARS-CoV-2 in human lung tissue from LoM showed a predominant infection of human lung epithelial cells, including type-2 pneumocytes that are present in alveoli and ciliated airway cells. Acute infection with SARS-CoV-2 was highly cytopathic and induced a robust and sustained type-I interferon and inflammatory cytokine and chemokine response. Finally, we evaluated a therapeutic and pre-exposure prophylaxis strategy for SARS-CoV-2 infection. Our results show that therapeutic and prophylactic administration of EIDD-2801-an oral broad-spectrum antiviral agent that is currently in phase II/III clinical trials-markedly inhibited SARS-CoV-2 replication in vivo, and thus has considerable potential for the prevention and treatment of COVID-19.


Assuntos
Tratamento Farmacológico da COVID-19 , COVID-19/prevenção & controle , Citidina/análogos & derivados , Hidroxilaminas/administração & dosagem , Hidroxilaminas/uso terapêutico , Administração Oral , Células Epiteliais Alveolares/imunologia , Células Epiteliais Alveolares/patologia , Células Epiteliais Alveolares/virologia , Animais , COVID-19/imunologia , Quimioprevenção , Quirópteros/virologia , Ensaios Clínicos Fase II como Assunto , Ensaios Clínicos Fase III como Assunto , Citidina/administração & dosagem , Citidina/uso terapêutico , Citocinas/imunologia , Células Epiteliais/virologia , Feminino , Xenoenxertos , Humanos , Imunidade Inata , Interferon Tipo I/imunologia , Pulmão/imunologia , Pulmão/patologia , Pulmão/virologia , Transplante de Pulmão , Masculino , Camundongos , Profilaxia Pós-Exposição , Profilaxia Pré-Exposição , SARS-CoV-2/imunologia , SARS-CoV-2/patogenicidade , Replicação Viral
7.
Biochim Biophys Acta Mol Basis Dis ; 1867(5): 166077, 2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-33515677

RESUMO

Idiopathic pulmonary fibrosis (IPF) is a lethal and agnogenic interstitial lung disease, which has limited therapeutic options. Recently, the NOD-, LRR- and pyrin domain-containing 3 (NLRP3) inflammasome has been demonstrated as an important contributor to various fibrotic diseases following its persistent activation. However, the role of NLRP3 inflammasome in pulmonary fibrogenesis still needs to be further clarified. Here, we found that the activation of the NLRP3 inflammasome was raised in fibrotic lungs. In addition, the NLRP3 inflammasome was found to be activated in alveolar epithelial cells (AECs) in the lung tissue of both IPF patients and pulmonary fibrosis mouse models. Further research revealed that epithelial cells, following activation of the NLRP3 inflammasome, could induce the myofibroblast differentiation of lung-resident mesenchymal stem cells (LR-MSCs). In addition, inhibiting the activation of the NLRP3 inflammasome in epithelial cells promoted the expression of dickkopf-1 (DKK1), a secreted Wnt antagonist. DKK1 was capable of suppressing the profibrogenic differentiation of LR-MSCs and bleomycin-induced pulmonary fibrosis. In conclusion, this study not only provides a further in-depth understanding of the pathogenesis of pulmonary fibrosis, but also reveals a potential therapeutic strategy for disorders associated with pulmonary fibrosis.


Assuntos
Células Epiteliais Alveolares/patologia , Diferenciação Celular , Inflamassomos/metabolismo , Miofibroblastos/patologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Fibrose Pulmonar/patologia , Células Epiteliais Alveolares/imunologia , Células Epiteliais Alveolares/metabolismo , Animais , Antibióticos Antineoplásicos/toxicidade , Bleomicina/toxicidade , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Miofibroblastos/imunologia , Miofibroblastos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/imunologia , Fibrose Pulmonar/metabolismo , Via de Sinalização Wnt
8.
J Ethnopharmacol ; 271: 113854, 2021 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-33513419

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Since the occurrence of coronavirus disease 2019 (COVID-19) in Wuhan, China in December 2019, COVID-19 has been quickly spreading out to other provinces and countries. Considering that traditional Chinese medicine (TCM) played an important role during outbreak of SARS and H1N1, finding potential alternative approaches for COVID-19 treatment is necessary before vaccines are developed. According to previous studies, Maxing Shigan decoction (MXSGD) present a prominent antivirus effect and is often used to treat pulmonary diseases. Furthermore, we collected 115 open prescriptions for COVID-19 therapy from the National Health Commission, State Administration of TCM and other organizations, MXSGD was identified as the key formula. However, the underlying molecular mechanism of MXSGD against COVID-19 is still unknown. AIM OF THE STUDY: The present study aimed to evaluate the therapeutic mechanism of MXSGD against COVID-19 by network pharmacology and in vitro experiment verification, and screen the potential components which could bind to key targets of COVID-19 via molecular docking method. MATERIALS AND METHODS: Multiple open-source databases related to TCM or compounds were employed to screen active ingredients and potential targets of MXSGD. Network pharmacology analysis methods were used to initially predict the antivirus and anti-inflammatory effects of MXSGD against COVID-19. IL-6 induced rat lung epithelial type Ⅱ cells (RLE-6TN) damage was established to explore the anti-inflammatory damage activity of MXSGD. After MXSGD intervention, the expression level of related proteins and their phosphorylation in the IL-6 mediated JAK-STAT signaling pathway were detected by Western blot. Molecular docking technique was used to further identify the potential substances which could bind to three key targets (ACE2, Mpro and RdRp) of COVID-19. RESULTS: In this study, 105 active ingredients and 1025 candidate targets were selected for MXSGD, 83 overlapping targets related to MXSGD and COVID-19 were identified, and the protein-protein interaction (PPI) network of MXSGD against COVID-19 was constructed. According to the results of biological enrichment analysis, 63 significant KEGG pathways were enriched, and most of them were related to signal transduction, immune system and virus infection. Furthermore, according the relationship between signal pathways, we confirmed MXSGD could effectively inhibit IL-6 mediated JAK-STAT signal pathway related protein expression level, decreased the protein expression levels of p-JAK2, p-STAT3, Bax and Caspase 3, and increased the protein expression level of Bcl-2, thereby inhibiting RLE-6TN cells damage. In addition, according to the LibDock scores screening results, the components with strong potential affinity (Top 10) with ACE2, Mpro and RdRp are mainly from glycyrrhiza uralensis (Chinese name: Gancao) and semen armeniacae amarum (Chinese name: Kuxingren). Among them, amygdalin was selected as the optimal candidate component bind to all three key targets, and euchrenone, glycyrrhizin, and glycyrol also exhibited superior affinity interactions with ACE2, Mpro and RdRp, respectively. CONCLUSION: This work explained the positive characteristics of multi-component, multi-target, and multi-approach intervention with MXSGD in combating COVID-19, and preliminary revealed the antiviral and anti-inflammatory pharmacodynamic substances and mechanism of MXSGD, which might provide insights into the vital role of TCM in the prevention and treatment of COVID-19.


Assuntos
Células Epiteliais Alveolares/efeitos dos fármacos , Anti-Inflamatórios/farmacologia , Antivirais/farmacologia , Tratamento Farmacológico da COVID-19 , Medicamentos de Ervas Chinesas/farmacologia , Células Epiteliais Alveolares/imunologia , Enzima de Conversão de Angiotensina 2/antagonistas & inibidores , Enzima de Conversão de Angiotensina 2/metabolismo , Animais , Anti-Inflamatórios/química , Anti-Inflamatórios/uso terapêutico , Antivirais/química , Antivirais/uso terapêutico , COVID-19/imunologia , COVID-19/virologia , Linhagem Celular , Biologia Computacional , Proteases 3C de Coronavírus/antagonistas & inibidores , Proteases 3C de Coronavírus/metabolismo , Avaliação Pré-Clínica de Medicamentos , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/uso terapêutico , Humanos , Interleucina-6/imunologia , Janus Quinases/metabolismo , Medicina Tradicional Chinesa/métodos , Simulação de Acoplamento Molecular , Fosforilação/efeitos dos fármacos , Mapas de Interação de Proteínas/efeitos dos fármacos , RNA Polimerase Dependente de RNA/antagonistas & inibidores , RNA Polimerase Dependente de RNA/metabolismo , Ratos , SARS-CoV-2/imunologia , Fatores de Transcrição STAT/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/imunologia
9.
Front Immunol ; 12: 788705, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35003108

RESUMO

In epigenome-wide association studies analysing DNA methylation from samples containing multiple cell types, it is essential to adjust the analysis for cell type composition. One well established strategy for achieving this is reference-based cell type deconvolution, which relies on knowledge of the DNA methylation profiles of purified constituent cell types. These are then used to estimate the cell type proportions of each sample, which can then be incorporated to adjust the association analysis. Bronchoalveolar lavage is commonly used to sample the lung in clinical practice and contains a mixture of different cell types that can vary in proportion across samples, affecting the overall methylation profile. A current barrier to the use of bronchoalveolar lavage in DNA methylation-based research is the lack of reference DNA methylation profiles for each of the constituent cell types, thus making reference-based cell composition estimation difficult. Herein, we use bronchoalveolar lavage samples collected from children with cystic fibrosis to define DNA methylation profiles for the four most common and clinically relevant cell types: alveolar macrophages, granulocytes, lymphocytes and alveolar epithelial cells. We then demonstrate the use of these methylation profiles in conjunction with an established reference-based methylation deconvolution method to estimate the cell type composition of two different tissue types; a publicly available dataset derived from artificial blood-based cell mixtures and further bronchoalveolar lavage samples. The reference DNA methylation profiles developed in this work can be used for future reference-based cell type composition estimation of bronchoalveolar lavage. This will facilitate the use of this tissue in studies examining the role of DNA methylation in lung health and disease.


Assuntos
Líquido da Lavagem Broncoalveolar/citologia , Fibrose Cística/imunologia , Metilação de DNA/imunologia , Epigenômica/métodos , Células Epiteliais Alveolares/imunologia , Broncoscopia , Contagem de Células , Pré-Escolar , Ilhas de CpG/genética , Fibrose Cística/diagnóstico , Fibrose Cística/genética , Feminino , Citometria de Fluxo , Granulócitos/imunologia , Humanos , Lactente , Linfócitos/imunologia , Macrófagos Alveolares/imunologia , Masculino , Valores de Referência
10.
Med Hypotheses ; 146: 110412, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33308936

RESUMO

The Corona Virus Disease (COVID-19) pandemic caused by Severe Acute Respiratory Syndrome Corona Virus 2 (SARS-CoV-2) requires a rapid solution and global collaborative efforts in order to define preventive and treatment strategies. One of the major challenges of this disease is the high number of patients needing advanced respiratory support due to the Acute Respiratory Distress Syndrome (ARDS) as the lung is the major - although not exclusive - target of the virus. The molecular mechanisms, pathogenic drivers and the target cell type(s) in SARS-CoV-2 infection are still poorly understood, but the development of a "hyperactive" immune response is proposed to play a role in the evolution of the disease and it is envisioned as a major cause of morbidity and mortality. Here we propose a theory by which the main targets for SARS-CoV-2 are the Type II Alveolar Epithelial Cells and the clinical manifestations of the syndrome are a direct consequence of their involvement. We propose the existence of a vicious cycle by which once alveolar damage starts in AEC II cells, the inflammatory state is supported by macrophage pro-inflammatory polarization (M1), cytokines release and by the activation of the NF-κB pathway. If this theory is confirmed, future therapeutic efforts can be directed to target Type 2 alveolar cells and the molecular pathogenic drivers associated with their dysfunction with currently available therapeutic strategies.


Assuntos
Células Epiteliais Alveolares/imunologia , Células Epiteliais Alveolares/virologia , COVID-19/imunologia , COVID-19/virologia , Modelos Biológicos , NF-kappa B/imunologia , SARS-CoV-2 , Células Epiteliais Alveolares/patologia , Enzima de Conversão de Angiotensina 2/fisiologia , COVID-19/etiologia , Endotélio Vascular/imunologia , Endotélio Vascular/patologia , Heparina de Baixo Peso Molecular/uso terapêutico , Humanos , Inflamação/imunologia , Inflamação/patologia , Ventilação Líquida , Macrófagos/imunologia , Macrófagos/patologia , NF-kappa B/antagonistas & inibidores , Neutrófilos/imunologia , Neutrófilos/patologia , Pandemias , Surfactantes Pulmonares/uso terapêutico , Síndrome do Desconforto Respiratório/etiologia , Síndrome do Desconforto Respiratório/imunologia , Síndrome do Desconforto Respiratório/virologia , SARS-CoV-2/imunologia , SARS-CoV-2/patogenicidade , Transdução de Sinais/imunologia
11.
Am J Respir Cell Mol Biol ; 64(1): 79-88, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32991819

RESUMO

Preclinical mouse models that recapitulate some characteristics of coronavirus disease (COVID-19) will facilitate focused study of pathogenesis and virus-host responses. Human agniotensin-converting enzyme 2 (hACE2) serves as an entry receptor for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) to infect people via binding to envelope spike proteins. Herein we report development and characterization of a rapidly deployable COVID-19 mouse model. C57BL/6J (B6) mice expressing hACE2 in the lung were transduced by oropharyngeal delivery of the recombinant human adenovirus type 5 that expresses hACE2 (Ad5-hACE2). Mice were infected with SARS-CoV-2 at Day 4 after transduction and developed interstitial pneumonia associated with perivascular inflammation, accompanied by significantly higher viral load in lungs at Days 3, 6, and 12 after infection compared with Ad5-empty control group. SARS-CoV-2 was detected in pneumocytes in alveolar septa. Transcriptomic analysis of lungs demonstrated that the infected Ad5-hACE mice had a significant increase in IFN-dependent chemokines Cxcl9 and Cxcl10, and genes associated with effector T-cell populations including Cd3 g, Cd8a, and Gzmb. Pathway analysis showed that several Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways were enriched in the data set, including cytokine-cytokine receptor interaction, the chemokine signaling pathway, the NOD-like receptor signaling pathway, the measles pathway, and the IL-17 signaling pathway. This response is correlative to clinical response in lungs of patients with COVID-19. These results demonstrate that expression of hACE2 via adenovirus delivery system sensitized the mouse to SARS-CoV-2 infection and resulted in the development of a mild COVID-19 phenotype, highlighting the immune and inflammatory host responses to SARS-CoV-2 infection. This rapidly deployable COVID-19 mouse model is useful for preclinical and pathogenesis studies of COVID-19.


Assuntos
Células Epiteliais Alveolares/imunologia , COVID-19/imunologia , Expressão Gênica , SARS-CoV-2/imunologia , Transdução de Sinais/imunologia , Adenoviridae/genética , Adenoviridae/metabolismo , Células Epiteliais Alveolares/metabolismo , Células Epiteliais Alveolares/virologia , Enzima de Conversão de Angiotensina 2/biossíntese , Enzima de Conversão de Angiotensina 2/genética , Enzima de Conversão de Angiotensina 2/imunologia , Animais , COVID-19/genética , COVID-19/metabolismo , COVID-19/patologia , Citocinas/genética , Citocinas/imunologia , Modelos Animais de Doenças , Humanos , Camundongos , Camundongos Transgênicos , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , Transdução de Sinais/genética , Transdução Genética
12.
Front Immunol ; 11: 568978, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33193346

RESUMO

Respiratory diseases adversely affect infants and are the focus of efforts to develop vaccinations and other modalities to prevent disease. The infant immune system differs from that of older children and adults in many ways that are as yet ill understood. We have used a C57BL/6 mouse model of infection with a laboratory- adapted strain of influenza (PR8) to delineate the importance of the cytokine IL-6 in the innate response to primary infection and in the development of protective immunity in adult mice. Herein, we used this same model in infant (14 days of age) mice to determine the effect of IL-6 deficiency. Infant wild type mice are more susceptible than older mice to infection, similar to the findings in humans. IL-6 is expressed in the lung in the early response to PR8 infection. While intramuscular immunization does not protect against lethal challenge, intranasal administration of heat inactivated virus is protective and correlates with expression of IL-6 in the lung, activation of lung CD8 cells, and development of an influenza-specific antibody response. In IL-6 deficient mice, this response is abrogated, and deficient mice are not protected against lethal challenge. These studies support the importance of the role of the tissue environment in infant immunity, and further suggest that IL-6 may be helpful in the generation of protective immune responses in infants.


Assuntos
Interações Hospedeiro-Patógeno/imunologia , Imunização , Vírus da Influenza A/imunologia , Interleucina-6/metabolismo , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/metabolismo , Adjuvantes Imunológicos , Administração Intranasal , Fatores Etários , Células Epiteliais Alveolares/imunologia , Células Epiteliais Alveolares/metabolismo , Animais , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Citocinas/metabolismo , Perfilação da Expressão Gênica , Imunidade , Imunização/métodos , Memória Imunológica , Camundongos , Infecções por Orthomyxoviridae/prevenção & controle , Infecções por Orthomyxoviridae/virologia , Linfócitos T/imunologia , Linfócitos T/metabolismo , Carga Viral
13.
FASEB J ; 34(9): 12197-12213, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-33000506

RESUMO

MHC-II on alveolar type-II (AT-II) cells is associated with immune tolerance in an inflammatory microenvironment. Recently, we found TNF-α upregulated MHC-II in AT-II in vitro. In this study, we explored whether TNF-α-mediated inflammation upregulates MHC-II on AT-II cells to trigger Treg expansion in inflammation-driven lung adenocarcinoma (IDLA). Using urethane-induced mice IDLA model, we found that IDLA cells mainly arise from AT-II cells, which are the major source of MHC-II. Blocking urethane-induced inflammation by TNF-α neutralization inhibited tumorigenesis and reversed MHC-II upregulation on tumor cells of AT-II cellular origin in IDLA. MHC-II-dependent AT-II cells were isolated from IDLA-induced Treg expansion. In human LA samples, we found high expression of MHC-II in tumor cells of AT-II cellular origin, which was correlated with increased Foxp3+ T cells infiltration as well as CXCR-2 expression. CXCR-2 and MHC-II colocalization was observed in inflamed lung tissue and IDLA cells of AT-II cellular origin. Furthermore, at the pro-IDLA inflammatory stage, TNF-α-neutralization or CXCR-2 deficiency inhibited the upregulation of MHC-II on AT-II cells in inflamed lung tissue. Thus, tumor cells of AT-II cellular origin contribute to Treg expansion in an MHC-II-dependent manner in TNF-α-mediated IDLA. At the pro-tumor inflammatory stage, TNF-α-dependent lung inflammation plays an important role in MHC-II upregulation on AT-II cells.


Assuntos
Adenocarcinoma de Pulmão/imunologia , Células Epiteliais Alveolares/imunologia , Antígenos de Histocompatibilidade Classe II/análise , Inflamação/imunologia , Neoplasias Pulmonares/imunologia , Receptores de Interleucina-8B/fisiologia , Linfócitos T Reguladores/fisiologia , Fator de Necrose Tumoral alfa/fisiologia , Animais , Feminino , Antígenos HLA-DR/análise , Antígenos de Histocompatibilidade Classe II/fisiologia , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Regulação para Cima
14.
Mol Med ; 26(1): 95, 2020 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-33054759

RESUMO

Pulmonary fibrosis arises from the repeated epithelial mild injuries and insufficient repair lead to over activation of fibroblasts and excessive deposition of extracellular matrix, which result in a mechanical stretched niche. However, increasing mechanical stress likely exists before the establishment of fibrosis since early micro injuries increase local vascular permeability and prompt cytoskeletal remodeling which alter cellular mechanical forces. It is noteworthy that COVID-19 patients with severe hypoxemia will receive mechanical ventilation as supportive treatment and subsequent pathology studies indicate lung fibrosis pattern. At advanced stages, mechanical stress originates mainly from the stiff matrix since boundaries between stiff and compliant parts of the tissue could generate mechanical stress. Therefore, mechanical stress has a significant role in the whole development process of pulmonary fibrosis. The alveoli are covered by abundant capillaries and function as the main gas exchange unit. Constantly subject to variety of damages, the alveolar epithelium injuries were recently recognized to play a vital role in the onset and development of idiopathic pulmonary fibrosis. In this review, we summarize the literature regarding the effects of mechanical stress on the fundamental cells constituting the alveoli in the process of pulmonary fibrosis, particularly on epithelial cells, capillary endothelial cells, fibroblasts, mast cells, macrophages and stem cells. Finally, we briefly review this issue from a more comprehensive perspective: the metabolic and epigenetic regulation.


Assuntos
Infecções por Coronavirus/imunologia , Epigênese Genética/imunologia , Fibrose Pulmonar Idiopática/imunologia , Mecanotransdução Celular/imunologia , Pneumonia Viral/imunologia , Embolia Pulmonar/imunologia , Insuficiência Respiratória/imunologia , Células Epiteliais Alveolares/imunologia , Células Epiteliais Alveolares/patologia , Betacoronavirus/imunologia , Betacoronavirus/patogenicidade , Fenômenos Biomecânicos , COVID-19 , Infecções por Coronavirus/genética , Infecções por Coronavirus/patologia , Infecções por Coronavirus/virologia , Citocinas/genética , Citocinas/imunologia , Células Endoteliais/imunologia , Células Endoteliais/patologia , Fibroblastos/imunologia , Fibroblastos/patologia , Humanos , Fibrose Pulmonar Idiopática/genética , Fibrose Pulmonar Idiopática/patologia , Fibrose Pulmonar Idiopática/virologia , Pulmão/irrigação sanguínea , Pulmão/imunologia , Pulmão/patologia , Macrófagos/imunologia , Macrófagos/patologia , Mecanotransdução Celular/genética , Pandemias , Pneumonia Viral/genética , Pneumonia Viral/patologia , Pneumonia Viral/virologia , Embolia Pulmonar/genética , Embolia Pulmonar/patologia , Embolia Pulmonar/virologia , Insuficiência Respiratória/genética , Insuficiência Respiratória/patologia , Insuficiência Respiratória/virologia , SARS-CoV-2 , Estresse Mecânico
15.
Genes (Basel) ; 11(9)2020 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-32858958

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), an RNA virus, is responsible for the coronavirus disease 2019 (COVID-19) pandemic of 2020. Experimental evidence suggests that microRNA can mediate an intracellular defence mechanism against some RNA viruses. The purpose of this study was to identify microRNA with predicted binding sites in the SARS-CoV-2 genome, compare these to their microRNA expression profiles in lung epithelial tissue and make inference towards possible roles for microRNA in mitigating coronavirus infection. We hypothesize that high expression of specific coronavirus-targeting microRNA in lung epithelia may protect against infection and viral propagation, conversely, low expression may confer susceptibility to infection. We have identified 128 human microRNA with potential to target the SARS-CoV-2 genome, most of which have very low expression in lung epithelia. Six of these 128 microRNA are differentially expressed upon in vitro infection of SARS-CoV-2. Additionally, 28 microRNA also target the SARS-CoV genome while 23 microRNA target the MERS-CoV genome. We also found that a number of microRNA are commonly identified in two other studies. Further research into identifying bona fide coronavirus targeting microRNA will be useful in understanding the importance of microRNA as a cellular defence mechanism against pathogenic coronavirus infections.


Assuntos
Células Epiteliais Alveolares/virologia , Betacoronavirus/genética , MicroRNAs/genética , Células Epiteliais Alveolares/imunologia , Betacoronavirus/patogenicidade , Linhagem Celular Tumoral , Genoma Viral , Humanos , MicroRNAs/metabolismo , Motivos de Nucleotídeos , SARS-CoV-2 , Análise de Sequência de RNA
16.
Cell Host Microbe ; 28(5): 683-698.e6, 2020 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-32841604

RESUMO

Alveolar macrophages are among the first immune cells that respond to inhaled pathogens. However, numerous pathogens block macrophage-intrinsic immune responses, making it unclear how robust antimicrobial responses are generated. The intracellular bacterium Legionella pneumophila inhibits host translation, thereby impairing cytokine production by infected macrophages. Nevertheless, Legionella-infected macrophages induce an interleukin-1 (IL-1)-dependent inflammatory cytokine response by recruited monocytes and other cells that controls infection. How IL-1 directs these cells to produce inflammatory cytokines is unknown. Here, we show that collaboration with the alveolar epithelium is critical for controlling infection. IL-1 induces the alveolar epithelium to produce granulocyte-macrophage colony-stimulating factor (GM-CSF). Intriguingly, GM-CSF signaling amplifies inflammatory cytokine production in recruited monocytes by enhancing Toll-like receptor (TLR)-induced glycolysis. Our findings reveal that alveolar macrophages engage alveolar epithelial signals to metabolically reprogram monocytes for antibacterial inflammation.


Assuntos
Células Epiteliais Alveolares/metabolismo , Antibacterianos/farmacologia , Inflamação/imunologia , Macrófagos Alveolares/metabolismo , Macrófagos/imunologia , Células Mieloides/metabolismo , Células Epiteliais Alveolares/imunologia , Citocinas/metabolismo , Epitélio , Expressão Gênica , Fator Estimulador de Colônias de Granulócitos e Macrófagos , Humanos , Imunidade Inata , Interleucina-1 , Legionella pneumophila , Doença dos Legionários , Macrófagos/microbiologia , Monócitos/imunologia , Células Mieloides/imunologia , Receptores Tipo I de Interleucina-1/genética , Receptores Tipo I de Interleucina-1/metabolismo , Receptores Toll-Like
17.
Science ; 369(6504): 712-717, 2020 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-32527928

RESUMO

Excessive cytokine signaling frequently exacerbates lung tissue damage during respiratory viral infection. Type I (IFN-α and IFN-ß) and III (IFN-λ) interferons are host-produced antiviral cytokines. Prolonged IFN-α and IFN-ß responses can lead to harmful proinflammatory effects, whereas IFN-λ mainly signals in epithelia, thereby inducing localized antiviral immunity. In this work, we show that IFN signaling interferes with lung repair during influenza recovery in mice, with IFN-λ driving these effects most potently. IFN-induced protein p53 directly reduces epithelial proliferation and differentiation, which increases disease severity and susceptibility to bacterial superinfections. Thus, excessive or prolonged IFN production aggravates viral infection by impairing lung epithelial regeneration. Timing and duration are therefore critical parameters of endogenous IFN action and should be considered carefully for IFN therapeutic strategies against viral infections such as influenza and coronavirus disease 2019 (COVID-19).


Assuntos
Células Epiteliais Alveolares/patologia , Citocinas/metabolismo , Interferon Tipo I/metabolismo , Interferons/metabolismo , Pulmão/patologia , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/patologia , Células Epiteliais Alveolares/imunologia , Animais , Apoptose , Líquido da Lavagem Broncoalveolar/imunologia , Diferenciação Celular , Proliferação de Células , Células Cultivadas , Citocinas/administração & dosagem , Citocinas/imunologia , Feminino , Vírus da Influenza A Subtipo H3N2 , Interferon Tipo I/administração & dosagem , Interferon Tipo I/farmacologia , Interferon-alfa/administração & dosagem , Interferon-alfa/metabolismo , Interferon-alfa/farmacologia , Interferon beta/administração & dosagem , Interferon beta/metabolismo , Interferon beta/farmacologia , Interferons/administração & dosagem , Interferons/farmacologia , Masculino , Camundongos , Infecções por Orthomyxoviridae/metabolismo , Receptor de Interferon alfa e beta/genética , Receptor de Interferon alfa e beta/metabolismo , Receptores de Interferon/genética , Receptores de Interferon/metabolismo , Transdução de Sinais , Proteína Supressora de Tumor p53/metabolismo , Interferon lambda
18.
Am J Respir Cell Mol Biol ; 63(4): 464-477, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32543909

RESUMO

By enhancing tissue repair and modulating immune responses, Foxp3+ regulatory T cells (Tregs) play essential roles in resolution from lung injury. The current study investigated the effects that Tregs exert directly or indirectly on the transcriptional profiles of type 2 alveolar epithelial (AT2) cells during resolution in an experimental model of acute lung injury. Purified AT2 cells were isolated from uninjured mice or mice recovering from LPS-induced lung injury, either in the presence of Tregs or in Treg-depleted mice, and transcriptome profiling identified differentially expressed genes. Depletion of Tregs resulted in altered expression of 49 genes within AT2 cells during resolution, suggesting that Tregs present in this microenvironment influence AT2-cell function. Biological processes from Gene Ontology enriched in the absence of Tregs included those describing responses to IFN. Neutralizing IFN-γ in Treg-depleted mice reversed the effect of Treg depletion on inflammatory macrophages and B cells by preventing the increase in inflammatory macrophages and the decrease in B cells. Our results provide insight into the effects of Tregs on AT2 cells. Tregs directly or indirectly impact many AT2-cell functions, including IFN type I and II-mediated signaling pathways. Inhibition of IFN-γ expression and/or function may be one mechanism through which Tregs accelerate resolution after acute lung injury.


Assuntos
Lesão Pulmonar Aguda/imunologia , Células Epiteliais Alveolares/imunologia , Interferon gama/imunologia , Pulmão/imunologia , Linfócitos T Reguladores/imunologia , Transcriptoma/imunologia , Animais , Linfócitos B/imunologia , Feminino , Fatores de Transcrição Forkhead/imunologia , Inflamação/imunologia , Macrófagos/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Transdução de Sinais/imunologia
19.
Part Fibre Toxicol ; 17(1): 13, 2020 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-32316988

RESUMO

BACKGROUND: Silica nanoparticles (SiNPs) are among the most widely manufactured and used nanoparticles. Concerns about potential health effects of SiNPs have therefore risen. Using a 3D tri-culture model of the alveolar lung barrier we examined effects of exposure to SiNPs (Si10) and crystalline silica (quartz; Min-U-Sil) in the apical compartment consisting of human alveolar epithelial A549 cells and THP-1-derived macrophages, as well as in the basolateral compartment with Ea.hy926 endothelial cells. Inflammation-related responses were measured by ELISA and gene expression. RESULTS: Exposure to both Si10 and Min-U-Sil induced gene expression and release of CXCL8, interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), interleukin-1α (IL-1α) and interleukin-1ß (IL-1ß) in a concentration-dependent manner. Cytokine/chemokine expression and protein levels were highest in the apical compartment. Si10 and Min-U-Sil also induced expression of adhesion molecules ICAM-1 and E-selectin in the apical compartment. In the basolateral endothelial compartment we observed marked, but postponed effects on expression of all these genes, but only at the highest particle concentrations. Geneexpressions of heme oxygenase-1 (HO-1) and the metalloproteases (MMP-1 and MMP-9) were less affected. The IL-1 receptor antagonist (IL-1RA), markedly reduced effects of Si10 and Min-U-Sil exposures on gene expression of cytokines and adhesion molecules, as well as cytokine-release in both compartments. CONCLUSIONS: Si10 and Min-U-Sil induced gene expression and release of pro-inflammatory cytokines/adhesion molecules at both the epithelial/macrophage and endothelial side of a 3D tri-culture. Responses in the basolateral endothelial cells were only induced at high concentrations, and seemed to be mediated by IL-1α/ß released from the apical epithelial cells and macrophages.


Assuntos
Células Epiteliais Alveolares/efeitos dos fármacos , Citocinas/metabolismo , Expressão Gênica/efeitos dos fármacos , Macrófagos Alveolares/efeitos dos fármacos , Nanopartículas/toxicidade , Dióxido de Silício/toxicidade , Células A549 , Células Epiteliais Alveolares/imunologia , Técnicas de Cocultura , Citocinas/genética , Relação Dose-Resposta a Droga , Expressão Gênica/imunologia , Humanos , Interleucina-1alfa/genética , Interleucina-1alfa/metabolismo , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Macrófagos Alveolares/imunologia , Modelos Biológicos , Tamanho da Partícula , Quartzo/toxicidade , Células THP-1
20.
Exp Biol Med (Maywood) ; 245(10): 897-901, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32249602

RESUMO

IMPACT STATEMENT: We suggest a novel modality in terms of IL-25/IL-33/TSLP's pro-fibrotic role in IPF. First, IL-25/IL-33/TSLP fully activates (myo)fibroblasts in fibroblastic foci (FF) in a paracrine-dependent manner. (IL-25/IL-33/TSLP)+alveolar epithelial cells-(IL-25R/IL-33R/TSLPR)+ (myo)fibroblasts axis may contribute greatly to the abnormal epithelial-mesenchymal crosstalk and lung fibrosis. Second, IL-25/IL-33/TSLP causes significant injury and phenotypic changes of alveolar epithelial cells in an autocrine-dependent manner. By acting directly on the two most important cells in the fibrotic process, i.e. alveolar epithelial cells and (myo)fibroblasts, we support the notion that biological therapies targeting IL-25/IL-33/TSLP will shed new light on the cure of IPF patients.


Assuntos
Células Epiteliais Alveolares/patologia , Citocinas/metabolismo , Fibrose Pulmonar Idiopática/patologia , Interleucina-17/metabolismo , Interleucina-33/metabolismo , Miofibroblastos/patologia , Células Epiteliais Alveolares/imunologia , Células Epiteliais Alveolares/metabolismo , Animais , Citocinas/imunologia , Humanos , Fibrose Pulmonar Idiopática/imunologia , Fibrose Pulmonar Idiopática/metabolismo , Interleucina-17/imunologia , Interleucina-33/imunologia , Miofibroblastos/imunologia , Miofibroblastos/metabolismo , Transdução de Sinais/imunologia , Linfopoietina do Estroma do Timo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA